Hubert Latała
Katedra Inżynierii Rolniczej i Informatyki
Akademii Rolniczej w Krakowie

TERMICZNA KONWERSJA ENERGII SŁONECZNEJ
W PŁASKICH KOLEKTORACH CIEZOWYCH

Streszczenie

Konwersja energii promieniowania słonecznego na ciepło zachodząca w płaskich kolektorach cieczowych uzależniona jest od wielu czynników. Dotyczy to zarówno cech konstrukcyjnych kolektorów jak i warunków w jakich zachodzi konwersja. W prezentowanej pracy przedstawiono wyniki przeprowadzonych badań dotyczące określenia ilości ciepła jakie można uzyskać dla czterech połączonych kolektorów posiadających jednakową konstrukcję.

Badania eksperymentalne wykonano na specjalnie przygotowanym stanowisku, które umożliwiało monitorowanie istotnych parametrów oraz ich archiwizację. Analizowano zarówno wartość dostępnego strumienia promieniowania słonecznego jak i temperatury czynnika grzewczego na wejściu i wyjściu układu kolektorów oraz temperaturę otoczenia. Określona na podstawie pomiarów ilość ciepła użytkowego była podstawą do wyznaczenia efektywności badanych kolektorów w zależności od dostępnego promieniowania słonecznego i temperatury powietrza otaczającego.

Słowa kluczowe: kolektory słoneczne, energia słoneczna, ciepło użytkowe

Wstęp

Średnia roczna energia promieniowania słonecznego w naszym kraju kształtuje się na poziomie około 1,1 kWh/m² [Lewandowski 2002]. Jest to ilość ciepła jaką można uzyskać ze spalania około 116 m³ gazu ziemnego. Zastosowanie wymienników, które zamieniają energię promieniowania słonecznego na ciepło daje ogromne możliwości nie tylko w pozyskiwaniu ciepła, ale również przynosi wymierne korzyści w ochronie środowiska naturalnego. Obecnie stosowane technologie termiczne wykorzystania promieniowania słonecznego pozwalają w znacznym stopniu zaspokoić potrzeby cieplne związane głównie z przygotowaniem ciepłej wody użytkowej. W Polsce jest to możliwe aby w skali rocznej udział energii solarnej w przygotowaniu tej wody był na poziomie około 40% [Lewandowski 2002]. Nasuwa się więc pytanie...
dotyczące sposobu realizacji takiego zamierzenia. Niezbędna jest do tego nie tylko
znajomość konstrukcji kolektorów, ale również ich potencjalne możliwości zamiany
„darmowej energii” na ciepło. Wpływ na to ma zarówno suma energii promieniowa-
ania słonecznego, jak również temperatura otoczenia [Kurpaska i wsp. 2004].

Stąd celem pracy była analiza ilości ciepła uzytecznego w płaskich kolektorach
w zależności od dostępnego promieniowania słonecznego i temperatury powietrza
otaczającego.

Opis obiektu badań

Badania doświadczalne przeprowadzono w obiekcie badawczym, zlokalizowanym
na terenie Wydziału Agroinżynierii Akademii Rolniczej w Krakowie. System kon-
wersji promieniowania słonecznego stanowiły 4 płaskie kolektory cieczowe usta-
wione pod kątem 45° do podłoża i skierowane płaszczyzną na południe. Układ ko-
lektorów połączony był ze zbiornikiem magazynującym ciepło przez umieszczoną
w jego wnętrzu wężownicę (rys. 1.).

![Diagram]

Rys. 1. Schemat ideowy systemu konwersji promieniowania słonecznego

Fig. 1. Schematic diagram for solar radiation conversion system

Czynna powierzchnia wymiany ciepła wężownicy wykonanej z miedzianej rurki
wynosiła 1,38 m². Wnętrze układu absorber kolektora - wężownica wypełnione było
płynem nieczarnarzającym – glikolem. Zainstalowana w tym układzie pompa cyrkulacyjna wymuszała ruch czynnika grzewczego w momencie, gdy jego temperatura była wyższa od temperatury wody w zbiorniku. Ciepło magazynowano w zbiorniku o pojemności 6 m³, który wypełniony był 3000 litrów wody.

Metodyka badań

Do realizacji postawionego celu wykonano pomiary następujących parametrów: natężenia promieniowania słonecznego \(E_s \), temperatury otoczenia \(T_{\text{ot}} \), temperatury czynnika grzewczego na wejściu \(T_{\text{w}_\text{e}} \) i wyjściu \(T_{\text{w}_\text{y}} \) z kolektora, ilości czynnika grzewczego przepływającego przez kolektory \(q \), temperatury wody w zbiorniku \(T_{\text{w}_\text{o}} \). Pomiary, wyżej wymienione wielkości, przeprowadzono w zmiennych warunkach solar-nych dla prędkości czynnika grzewczego w zakresie od 0,017 do 0,068 kg/s.

Całkowite promieniowanie słoneczne \(E_s \) padające na poziomą powierzchnię mięrzono pyranometrem CM3 w zakresie długości fal promieniowania elektromagnetycznego od 0,2 do 2,8 mm. Prędkość wiatru monitorowana była czaszowym wiatromierzem o zakresie pomiarowym od 0 do 50 m/s. Ilość czynnika grzewczego przepływającego przez kolektory mierzono przepływomierzem turbinkowym przyczynionym do pracy w podwyższonej temperaturze. Do pomiaru temperatury użyto pół-przewodnikowych przetworników typu LM 235.

Analogowe sygnały pomiarowe, z wymienionych powyżej punktów pomiarowych, były zamieniane w przetworniku analogowo-cyfrowym na sygnał cyfrowy. Przetworzony, z rozdzielczością 12 bitów, sygnał przesyłany był do komputera. Zainstalowany program umożliwiał wizualizację i archiwizację wielkości mierzonych. Dane zapisywane były w przedziałach 30 sekundowych.

Na podstawie zgromadzonych danych wyliczono sumę energii promieniowania słonecznego i ciepło użyteczne z kolektorów. Przy czym jako podstawę czasu trwania konwersji energii promieniowania słonecznego na ciepło przyjęto okres, w którym pracowała pompa cyrkulacyjna.

Ciepło użyteczne z kolektorów \(Q_u \) wyliczono według zależności:

\[
Q_u = m \cdot c_p \cdot (T_{\text{w}_\text{y}} - T_{\text{w}_\text{e}})
\]

gdzie:

- \(m \) – jednostkowe natężenie przepływu czynnika grzewczego, kg/s
- \(T_{\text{w}_\text{y}}, T_{\text{w}_\text{e}} \) – temperatury czynnika grzewczego na wyjściu i wejściu z kolektora, K
- \(c_p \) – ciepło właściwe czynnika, MJ/kg · K

279
Z otrzymanych wyników wyliczono ilość ciepła dostępnego z promieniowania słonecznego, którą następnie porównano z ciepłem zaabsorbowanym przez kolektory obliczając ich sprawność (h):

$$\eta = \frac{Q_u}{Q_s}$$ \hspace{1cm} (2)

gdzie:

Q_s – ciepło dostępne z promieniowania słonecznego, MJ

Obliczeń sprawności kolektorów wykonano dla zmieniającego się natężenia prędkości czynnika grzewczego w zakresie od 0,017 do 0,072 kg/s.

Wyniki i dyskusja

Na rysunku 2 przedstawiono wybraną dobową zmianę wartości mierzonych parametrów. Ustabilizowane wartości temperatur w porze nocnej zmieniły się w ciągu dnia pod wpływem zmiennego promieniowania słonecznego. Dynamicznie zmieniające się warunki natężenia promieniowania słonecznego były następetwem zmiennego zachmurzenia. Analizując wartości wymuszeń (promieniowanie słoneczne) i wartości temperatury czynnika wychodzącego z kolektorów wykazano, że promieniowanie słoneczne miało największy wpływ na zmianę temperatury czynnika opuszczającego kolektory.

Rys. 2. Przykładowe wielkości mierzonych parametrów w cyklu jednej doby

Fig. 2. Example values of measured parameters in one day cycle
Nie bez znaczenia jest również temperatura otoczenia, której wartość wpływa na ilość ciepła uzyskanego z wymiennika cieczowego. Poddano analizie wymienione powyżej parametry, których wartości uzyskano z badań eksperymentalnych prowadzonych od czerwca do października. Spośród badanych zależności określającej zmianę ilości ciepła użytecznego z kolektorów w funkcji ciepła dostępnego z promieniowania słonecznego i temperatury powietrza otaczającego, największą wartość współczynnika determinacji uzyskano dla modelu regresji nieliniowej. Funkcja ta (określona estymacją nieliniową metodą quasi-Newtona przy zachowanym współczynniku zbędności 0,001) przyjmuje postać:

$$Q_u = -526,578 \cdot T_{ot}^{-1.907} + 0,241 \cdot E_s^{1.264} + 2,1$$ \hspace{1cm} R^2 = 0,92 \quad (3)$$

w zakresie: $21,6 < E_s < 124,9 \text{ MJ}$; \hspace{0.5cm} $11,4 < T_{ot} < 27,5 \text{ °C}$

W celu sprawdzenia poprawności wyznaczonego modelu regresji nieliniowej porównano wartości eksperymentalne z wynikami otrzymanymi na podstawie obliczeń. Wynik tego porównania przedstawiono na rycinie 3. Maksymalne względné różnice między przedstawionymi na wykresie wartościami (względem wartości zmierzonej) nie przekraczają 7,4 MJ.

Rys. 3. Porównanie między obliczoną z modelu i określoną ilością ciepła użytecznego w warunkach wykonywanego eksperymentu

Fig. 3. Comparison of usable heat amount computed using the model, and that determined in carried out experiment conditions
Rys. 4. Usable heat of flat liquid collectors in function of summed up solar radiation and ambient temperature

Rys. 5. The model of linear regression, which determines change in collector efficiency in surrounding air temperature function
Wpływ sumy promieniowania słonecznego i temperatury otoczenia na ciepło użytkowe z płaskich kolektorów cieczowych przedstawiono na rysunku 4. Analizując przebieg izolinii wartości ciepła użytkowego wykazano, że zarówno suma promieniowania słonecznego jak i temperatura otoczenia decydują o jego wartości.

Temperatura otoczenia wpływa nie tylko na wartość ciepła użytkowego uzyskiwanego z kolektorów ale również na ich sprawność. W czasie prowadzenia eksperymentu temperatura powietrza otaczającego zmieniała się w granicach od 11,4°C do 27,5°C. Najniższą (0,52) i najwyższą (0,87) wartość sprawności użytkowej kolektorów uzyskano odpowiednio dla podanych powyżej wartości liczbowych temperatur otoczenia. Korzystając z modelu regresji liniowej przedstawionej na rycinie 5 można w przybliżeniu stwierdzić, że dwukrotny wzrost temperatury otoczenia wpływa na około 30% wzrost sprawności kolektorów.

Przedstawiona analiza wyników danych eksperymentalnych potwierdziła wpływ zarówno sumy dziennego promieniowania słonecznego jak i temperatury otoczenia na ilość ciepła użytkowego, jakie można uzyskać z płaskich kolektorów cieczowych.

Wnioski

1. Korzystając z modelu regresji nieliniowej oraz znajomości wartości dostępnej energii z promieniowania słonecznego oraz temperatury otoczenia można określić ciepło użytkowe kolektorów z maksymalnym błędem względnym nie przekraczającym 32%.

2. W czasie prowadzonego eksperymentu (czerwiec - październik) ciepło użytkowe z kolektorów, dostępne w ciągu dnia, zawierało się w granicach od 13 do 107 MJ.

3. Dwukrotnie wyższa temperatura otoczenia wpływa na poprawę sprawności użytkowej kolektorów w granicach o około 30%.

Bibliografia

SOLAR ENERGY THERMAL CONVERSION IN FLAT LIQUID COLLECTORS

Summary

Solar radiation energy conversion to heat that takes place in flat liquid collectors, depends on many factors. This applies both to collector constructional (structural) properties and conditions, in which conversion occurs. Presented study shows completed research results regarding determination of heat amount, which may be obtained for four combined collectors with identical structure.

Experimental research was carried out at specially prepared work station, which allowed to monitor important parameters and to archive them. The analysis covered both available solar radiation flux value, and heating agent temperature at collector system inlet and outlet and ambient temperature. Usable heat amount determined on the grounds of measurements provided the basis to determine efficiency of tested collectors depending on available solar radiation and surrounding air temperature.

Key words: solar (energy) collectors, solar energy, usable heat