Wojciech Mueller Instytut Inżynierii Rolniczej Akademia Rolnicza w Poznaniu

IDENTYFIKACJA LOSOWYCH ROZKŁADÓW PARAMETRÓW CIEPLNYCH ZŁOŻA, BĘDĄCYCH KONSEKWENCJĄ PROBABILISTYCZNEGO CHARAKTERU PROCESU ŁADOWANIA KAMIENNEGO AKUMULATORA CIEPŁA

Streszczenie

Akumulatory energii cieplnej stanowią ważny element w procesie dopasowywania charakterystyki źródła z zmiennym zapotrzebowaniem na energię. Problem ten jest szczególnie istotny w przypadku źródeł niekonwencjonalnych. Dodatkowym czynnikiem wpływającym na kształtowanie się tego zjawiska jest probabilistyczny charakter źródła energii jej pozyskiwania jak i przechowywania. W fazie ładownia kamiennego akumulatora energii cieplnej losowy charakter posiada średnica równoważna elementów złoża jak i temperatura otoczenia i powietrza zasilającego, uzyskiwanego z kolektora słonecznego. Zostało to uwzględnione w modelu matematycznym, który stanowił podstawę do budowy systemu informatycznego. Wykorzystano go następnie do realizacji symulacji komputerowej, celem identyfikacji rozkładów losowych tempe-ratury powietrza, kamieni w poszczególnych przekrojach złoża jak również ilości energii cieplnej w nim skumulowanej.

Słowa kluczowe: akumulator energii cieplnej, złoże kamienne, model probabilistyczny.

Wykaz oznaczeń

- <u>A</u> powierzchnia międzyfazowa przypadająca na jednostkę długości akumulatora [m²/m],
- $A_{_{WW}}$ zewnętrzna powierzchnia graniczna akumulatora przypadająca na jednostkę długości akumulatora [m²/m],
- c_f ciepło właściwe płynu [J/kgK],

- c_m ciepło właściwe kamienia [J/kgK],
- <u>h</u> współczynnik wnikania ciepła na granicy dwóch ośrodków $[W/m^2K]$,
- n& masowe natężenie przepływu płynu [kg/s],
- t czas [s],

 T_f – temperatura płynu [°C],

- T_{f_0} temperatura płynu wchodzącego do złoża [°C],
- T_{fe} temperatura otoczenia [°C],
- T_m temperatura kamienia [°C],
- T_{mv} temperatura początkowa magazynu [°C],
- Wymiany ciepła pomiędzy ścianą akumulatora a otoczeniem [W/m²K],
- x krok przestrzenny,
- $\underline{\varepsilon}$ porowatość ośrodka,
- ρ_m gęstość kamienia [kg/m³].
- $\underline{\underline{T}}_{fo}$ temperatura płynu wchodzącego do złoża [°C],
- \underline{T}_{ie} temperatura otoczenia [°C],
- NM liczba sekcji (kroków przestrzennych), na które został podzielony kumulator,
- NL liczba kroków czasowych,
- j = 1...NM j-ty krok przestrzenny,

l = 1...NL - 1-ty krok czasowy.

- T_{fe}(t) zmienna deterministyczna będąca funkcją czasu,
- $\Delta \underline{T}_{fe}$ zmienna losowa o rozkładzie normalnym i wartości oczekiwanej równej zero.

Probabilistyczny model przepływu ciepła w kamiennym akumulatorze podczas fazy ładowania

Z reguły akumulatory kamienne współpracują z powietrznymi kolektorami słonecznymi. Oznacza to, iż losowy charakter ma nie tylko średnica równoważna kamieni złoża, ale również temperatura powietrza otoczenia jak i powietrza zasilającego akumulator w fazie jego ładowania.

Nowy jednowymiarowy model opisujący proces wymiany ciepła w złożu kamiennym w trakcie jego ładownia [Mueller, Kujawa, Wers 2003] uwzględniający losowość sygnalizowanych wielkości fizycznych – podobnie jak poprzedni [Mueller 1989] – składa się z dwóch równań różniczkowych, które utworzono posługując się bilansem energetycznym dla elementarnej objętości kamieni i powietrza:

$${}^{\bullet} c_f \frac{\partial T_f}{\partial x} = \underline{h} \underline{A} (T_f - T_m)$$
 (1)

$$B(1-\underline{\varepsilon})\rho_m c_m \frac{\partial T_m}{\partial t} = \underline{h}\underline{A}(T_f - T_m) - UA_{ww}(T_m - \underline{T}_{f_e})$$
(2)

Oba te wyrażenia uzupełnione są o następujące warunki początkowo-brzegowe:

dla
$$x = 0$$
 $T_f = \underline{T}_{f_0}$ (3)

oraz

dla
$$t = 0$$
 $T_m = T_{mn}$ (4)

Wielkości podkreślone pojedynczą kreską są funkcjami losowymi określanymi na podstawie średnicy równoważnej kamienia jako zmiennej losowej. Z kolei parametry wyróżnione przez podwójne podkreślenie są procesami stochastycznymi.

Opisywane zagadnienie zostało rozwiązane dzięki zastosowaniu metody różnic skończonych. W efekcie dyskretyzacji równań różniczkowych (1) (2) uzyskano równania algebraiczne (5) i (6), które uzupełnione o warunki początkowobrzegowe stanowią rozwiązanie problemu. Mają one następując postać:

$$T_{f_{j+1}}^{l} = (T_{f_{j}}^{l} - T_{m_{j}}^{l-1}) exp\left(-\frac{\underline{h}\underline{A}L}{\cdot}\right) + T_{m_{j}}^{l-1}$$

$$(5)$$

$$T_{m_{j}}^{l+1} = \frac{\Delta t NM\left\{\stackrel{\bullet}{m}c_{f}(T_{f_{j}}^{l} - T_{f_{j+1}}^{l}) - UA_{ww}(T_{m_{j}}^{l} - \underline{T}_{\underline{f}e})\right\}}{\rho_{m}Bc_{m}(1 - \underline{\varepsilon})L} + T_{m_{j}}^{l}$$
(6)

Na podstawie powyższego modelu zaprojektowana i wytworzono system indormatyczny. Etap pierwszy zrealizowano wykorzystując metodyki strukturalne i obiektowe. Opracowane diagramy obiektowe przypadków użycia i klas zbudowano w oparciu o notację UML. W następnej kolejności przystąpiono do realizacji aplikacji przy użyciu środowiska wizualnego jakim jest C++Builder.

Symulacja komputerowa

W przeprowadzanym eksperymencie bazującym na modelu abstrakcyjnym uwzględniono tylko zależność temperatury otoczenia od czasu, pomijając jej zależność od rejonu świta i okresu w roku. Przesądziła o tym szczupłość posiadanych danych, która zadecydowała również o fakcie, iż temperaturę otoczenia potraktowano nie jako proces stochastyczny, ale jako funkcję losową o postaci [Benjamin, Cornell 1977]:

$$\underline{\underline{T}}_{fe} = T_{fe}(t) + \Delta \underline{\underline{T}}_{fe}$$
(7)

Człon deterministyczny powyższego równania aproksymowano trzema równaniami kwadratowymi odpowiednio dla trzech miesięcy: czerwca, lipca i sierpnia.

Posiadane dane stanowiły również podstawę do określenia odchylenia standardowego opisującego człon losowy. Aproksymowane funkcje wraz z zidentyfikowanymi odchyleniami standardowymi zamieszczono w tabeli 1.

Tabela 1.	Zestawienie	równań i	i odchyleń	standardowych	uwzględnianych	podczas
	wyznaczania	temperat	tury otocze	enia		

Table 1.	Equations	å	standard	deviations	considered	for	determination	of
	ambient air	r ter	nperature					

Miejsce/okres	Postać funkcji [°C]	Poziom istotności równania	Odchylenie standardowe [°C]	
Siedlce/czerwiec	$f(t)=-0,0614t^2+1,6760t+10,0375$	0,9638	2,9990	
Siedlce/lipiec	$f(t)=-0,0660t^2+1,8131t+7,1464$	0,9498	2,5488	
Siedlce/sierpień	$f(t)=-0.04390t^2+1.1976t+7.2607$	0,9037	2,7131	

Analogiczną formę matematyczną zastosowano do opisu temperatury powietrza na wejściu do złoża z uwagi na niekompletność posiadanych danych. Te upraszczające założenia były konieczne do przeprowadzenia symulacji komputerowej, acz-kolwiek mają one charakter tymczasowy.

Obliczenia przeprowadzono dla następujących danych wejściowych:

- materiał złoża tłuczeń granitowy,
- długość akumulatora 1,72 m,
- liczba sekcji 43,
- długość kroku czasowego 300 s,
- liczba kroków czasowych 36,

- pole powierzchni zewnętrznej sekcji magazynu 0,2368 m²,
- pole przekroju akumulatora prostopadłe do kierunku przepływu 1,44 m²,
- temperatura początkowa magazynu 16,5°C,
- masowe natężenie przepływu powietrza 0,187 kg/s,
- liczba warstw izolacji 1, współczynnik przewodzenia ciepła warstwy 0,025 W/mK, grubość warstwy – 0,06 m,
- średnica równoważna kamienia: wartość oczekiwana 0,0388 m, odchylenie standardowe 0,0083 m,
- wielkości niezbędne do identyfikacji rozkładu temperatury dla modelu otoczenia i powietrza wchodzącego do akumulatora:
 - okres ładowania czerwiec, godzina rozpoczęcia ładowania 10.00,
 - odchylenie standardowe temperatury otoczenia 2,99°C,
 - wartość temperatury powietrza wchodzącego do akumulatora na początku 40°C, w połowie 44°C i na końcu procesu ładowania 42°C,
 - odchylenie standardowe temperatury powietrza wchodzącego do akumulatora $2,99^{\circ}$ C.

Wyniki badań

Prezentowany model wymiany ciepła, stanowiący podstawę systemu informatycznego uwzględnia zarówno losowy charakter średnicy równoważnej kamieni tworzących złoże jak i stochastyczny charakter temperatury powietrza otoczenia i zasilającego akumulator. Średnica równoważna kamieni to zmienna losowa o rozkładzie logarytmiczno-normalnym [Benjamin, Cornell 1977], natomiast dla temperatur powietrza przyjęto rozkład normalny. Parametry tych rozkładów wyznaczono na bazie posiadanych danych empirycznych.

Do przeprowadzenia identyfikacji rozkładów zmiennych losowych wielkości fizycznych takich jak temperatura powietrza jak i złoża poszczególnych sekcji oraz ilości energii cieplnej całego akumulatora zrealizowano pięćdziesiąt powtórzeń. Analizę statystyczną przeprowadzono dla wielkości opisujących sekcję 27 i 43, których lokalizację prezentuje rys. 1.

W procesie analizy statystycznej postawiono dwie wykluczające się hipotezy, iż temperatury powietrza i złoża są zmiennymi losowymi o rozkładzie normalnym oraz ·lognormalnym. Ocenę poprawności tak postawionych hipotez uzyskano stosując test chi-kwadrat.

- *Rys. 1. Lokalizacja sekcji, dla których przeprowadzano analizę statystyczną temperatury powietrza i złoża*
- Fig. 1. Determination location of sections for which statistical analysis of the air & rock temperatures was conducted

Efekty analizy statystycznej wraz z wartościami przeprowadzonych testów prezentuje tabela 2

- Tabela 2. Statystyka podstawowa temperatury złoża i powietrza wraz z dopasowanymi rozkładami
- *Table 2. Basic statistics of rock-bed & air temperatures including matched distributions*

Wielkość	Czas Numer Wartość ładowania sekcji średnia Wariar		Wariancja	Rozkład normalny		Rozkład lognormalny		
nzyczna	ladowalila	Sekeji	siculta		χ^2	α	χ^2	α
T – złoża	1,5 h	27	24,726	0,81814	4,93	0,177	5,37	0,147
T– złoża	3 h	27	43,071	0,42668	1,23	0,746	1,23	0,745
T – złoża	1.5 h	43	16,392	0,00878	4,03	0,258	4,02	0,259
T – złoża	3 h	43	34,299	0,45326	0,07	0,789	0,1	0,752
T – pow.	1.5 h	27	26,029	0,37435	4,68	0,196	4,92	0,177
T – pow.	3 h	27	43,233	0,36041	1,33	0,514	1,34	0,511
T – pow.	1.5 h	43	16,472	0,01152	0,87	0,350	0,86	0,353
T - pow.	3 h	43	35,179	0,32277	1,81	0,612	1,83	0,608

Graficzną ilustracją stopnia rozrzutu i dopasowania wyników temperatury powietrza i złoża dla wybranej sekcji do rozkładu normalnego prezentują rysunki rys. 2 i rys. 3.

Fig. 2. Bar-chart of rock-bed temperature for the storage last section with matched normal distribution (3 hours charging)

Identyczną procedurę postępowania przeprowadzono w odniesieniu do wielkości energii cieplnej zgromadzonej w złożu. Wyniki analizy statystycznej wraz z oceną stopnia dopasowania rozkładów normalnego i lognormalnego zamieszczono w tabeli 3.

Tabela 3. Statystyka podstawowa energii cieplnej złoża wraz z dopasowanymi rozkładami

Wielkość fizyczna	Czas ładowania	Wartość średnia kJ	Odchylenie standardowe	Rozkład	Rozkład lognormalny		
				χ^2	α	χ^2	α
Q – złoża	2 h	27707,5	5451,6	5,822	0,212	4,05	0,405
Q – złoża	3 h	36971,1	5929,6	0,948	0,814	0,887	0,971

Table 3. Basic statistics of rock-bed thermal energy including matched distributions

- Rys. 3. Histogram temperatury powietrza wchodzącego do ostatniej sekcji akumulatora wraz z dopasowanym rozkładem normalnym (3 h procesu ładowania)
- Fig. 3. Bar-chart of air temperature entering rock-bed storage last section, including matched normal distribution (3 hours charging)

Uzyskany histogram wielkości energii cieplnej złoża z dopasowanym rozkładem lognormalnym prezentuje rys. 4.

Rys. 4. Histogram energii cieplnej złoża i dopasowany do niego rozkład lognormalny

Fig 4. Bar-chart of rock-bed thermal energy with matched lognormal distribution

Podsumowanie

Przeprowadzone badania symulacyjne z wykorzystaniem zbudowanego systemu informatycznego jak i przeprowadzona analiza statystyczna pozwoliły na sformułowanie następujących uwag i wniosków:

- 1. Testowanie hipotez o prognozowanym rozkładzie normalnym lub lognoramalnym temperatury powietrza, złoża i pojemności, przy użyciu testu chi-kwadrat, nie daje podstaw (na poziomie istotności 0.05) do odrzucenia żadnej z nich.
- Wartości sprawdzianu hipotezy H₀, w przypadku testu chi-kwadrat, dla pojemności cieplnych złoża sugerują wybór rozkładu lognormalnego w porównaniu z normalnym.
- Przeprowadzenie dalszych kompleksowych analiz statystycznych będzie możliwe po rozbudowie programu AkTerm2003, o moduł generujący pakiety danych dla programu Statistica.

Bibliografia

Benjamin J. R., Cornell C. A. 1977. Rachunek prawdopodobieństwa, statystyka matematyczna i teoria decyzji dla inżynierów. Wydawnictwo Naukowo-Techniczne, Warszawa.

Mueller W., Kujawa S., Weres J. 2003. Losowość temperatury w procesie ładowania kamiennego akumulatora energii cieplnej. Inżynieria Rolnicza 12 (54), Warszawa.

Mueller W. 1989. Proces wymiany ciepła w kamiennym złożu o zróżnicowanej wielkości elementów wypełnienia. Zeszyty Naukowe Politechniki Świętokrzyskiej, Mechanika 44, Komitet Techniki Rolniczej PAN.

IDENTIFICATION OF ROCK-BED THERMAL PARAMETERS RANDOM DISTRIBUTION AS A RESULT OF PROBABILISTIC CHARACTER OF THE STORAGE CHARGING PROCESS

Summary

Thermal energy storage systems constitute an important element in the process of matching an energy source with a receiver of a variable energy demand. This is particularly important in cases of unconventional energy sources. Probabilistic character of the energy source as well as of the process of gathering & storing the energy influence the form of the phenomenon. In the phase of charging a rock-bed storage, both equivalent diameter of bed parts, ambient temperature & the temperature of the outlet air of a solar energy collector are of random character. This was considered in the mathematical model – a base to create a computer program to simulate the process of energy storage. The aim was to identify random distribution of ambient air temperature, rock temperature at various bed levels & the amount of energy stored.

Key words: thermal energy storage, rock-bed, probabilistic model