

INŻYNIERIA ROLNICZA Agricultural Engineering

ISSN 1429-7264

s. 237-247

2013: Z. 4(147) T.1

Polskie Towarzystwo Inżynierii Rolniczej http://www.ptir.org

ANALIZA GEOMETRII ZIAREN GLEBOWEJ MASY ŚCIERNEJ

Jerzy Napiórkowski, Piotr Szczyglak, Karol Kołakowski Katedra Budowy, Eksploatacji Pojazdów i Maszyn, Uniwersytet Warmińsko-Mazurski w Olsztynie

Streszczenie. W pracy przedstawiono analizę geometrii ziaren glebowych dla czterech rodzajów glebowej masy ściernej. Oceny geometrii dokonano przy pomocy mikroskopu stereometrycznego z wykorzystaniem programu Motic Images Plus 2.0. Ocenie poddano promień zewnętrzny okręgu opisanego na konturze ziarna ściernego, promień wewnętrzny okręgu wpisanego wewnątrz konturu ziarna, pola uwypukleń figur nieregularnych ziarna oraz obwody uwypukleń figur nieregularnych. Badano frakcje glebowe żwiru, piasku oraz iłu i pyłu w glebach piaszczystych i gliniastych. Uzyskane wyniki i obliczenia statystyczne umożliwiły stwierdzenie istotnych różnic w geometrii ziaren masy ściernej oraz zróżnicowany ich kształt w poszczególnych glebach. Najmniejsze różnice geometrii cząstek stwierdzono dla frakcji pyłu i iłu (maksymalnie 28%), największe zaś dla frakcji piasku, dochodzące do 79%. Wskazuje to na konieczność uwzględnienia, w procesie doboru właściwości warstwy wierzchniej elementu roboczego do danego rodzaju obrabianej gleby, obok składu granulometrycznego i odczynu gleby, także geometrii ziaren glebowych. Celem pracy jest ocena geometrii ziaren frakcji żwiru, piasku i pyłu wraz z iłem, wchodzących w skład wybranych rodzajów glebowej masy ściernej.

Słowa kluczowe: glebowa masa ścierna, geometria ziarna, zużycie ścierne, mikroskop stereometryczny

Wprowadzenie

Zużywanie w glebowej masie ściernej, mimo powszechnego występowania w eksploatacji maszyn w różnych branżach przemysłu, jest najmniej zbadane ze wszystkich przypadków zużywania ściernego. Opracowano wiele zależności empirycznych, jednak dotychczas nie opracowano modelu analitycznego tego rodzaju zużywania. Wiele ośrodków naukowych prowadzi badania materiałów stosowanych na elementy robocze narzędzi czy maszyn obrabiających glebową masę ścierną (Aysel, 2011; Bayhan, 2006; Horvat i in., 2008; Kostencki, 2010). Trudniej natomiast odnaleźć w literaturze wyniki badań właściwości gleby w aspekcie masy ściernej (Napiórkowski, 2010). Jerzy Napiórkowski, Piotr Szczyglak, Karol Kołakowski

Wszyscy dotychczas zajmujący się tym zagadnieniem do najważniejszych czynników decydujących o przebiegu zużywania zaliczają: twardość i podatność na odkształcenia elementów roboczych, twardość i wytrzymałość ziarna na ściskanie, rozmiar ziarna i jego kształt, promienie i kąt wierzchołkowy uwypukleń oraz liczbę ziaren aktywnie działających. Geometria ziaren glebowej masy ściernej oraz powierzchnia właściwa mają kluczowe znaczenie w sposobie oddziaływania i intensywności zużycia elementów roboczych obrabiających glebową masę ścierną (Tennenbaum, 1990; Napiórkowski i in., 2012). Powierzchnia właściwa glebowej masy ściernej to pole powierzchni granicy fazy stałej, a otaczającej jej fazy gazowej lub ciekłej, przypadające na jednostkę jej masy. Wielkość powierzchni właściwej jest parametrem, według którego można sądzić o niektórych właściwościach fizycznych lub fizykochemicznych masy glebowej, decydujących między innymi o jej oddziaływaniu zużyciowym. Jest ona jednym z podstawowych parametrów charakteryzujących układy rozproszone, ponieważ procesy zachodzące w układach heterogenicznych muszą przechodzić przez etap zjawisk powierzchniowych.

Materiały drobno uziarnione zawierają ziarna o bardzo zróżnicowanej geometrii (Szymańska-Czaja, 2007). Ilościowe określenie kształtu ziarna mineralnego jest w wielu przypadkach niezbędne, ale jak dotychczas nie ma jednoznacznej metody określania i oznaczania tej wielkości. Powierzchnia właściwa jest najmniejsza w przypadku cząstek kulistych, rośnie zaś w przypadku cząstek występujących w formie płytek. W pracy Kałdońskiego (2008) stwierdzono, że najbardziej uogólnionym modelem ziarna ściernego jest model wyobrażony regularnym ośmiościanem zbudowanym z dwóch piramid tetragonalnych (oktaedr). Ośmiościan taki odzwierciedla z dobrym przybliżeniem kształt ziaren. Obiekt ten odwzorowuje cząstki zanieczyszczeń mineralnych w cieczy i stanowił podstawę wielu analiz związanych z tym tematem. Jest to model idealny, który zawiera uśrednione miary kątów i liczbę ostrzy (Kałdoński, 2008). Jakkolwiek metoda ta może mieć odzwierciedlenie dla żwiru oraz piasku, to dla drobniejszych frakcji może być wątpliwa. Przykładowe zdjęcia cząstek glebowej masy ściernej przedstawiono na rysunku 1 (Brady, 1990). Zdjęcia przedstawiają cząstki kwarcu i skalenia a także płytki kaolinu oraz płatkową strukturę illitu. Na rysunku 2 przedstawiono przykładowy obraz gleby gliniastej w środowisku naturalnym (Troeh i Thompson, 1993).

Rysunek 1. Zdjęcia mikroskopowe frakcji glebowych: a) piasek kwarcowy, b) skaleń, c) illit, d) kaolin (Brady, 1990)

Figure 1. Microscope photos of soil fractions: a) quartz sand, b) feldspar, c) illite, d) kaolin (Brady, 1990)

Rysunek 2. Obraz gleby gliniastej (Troeh i Thompson, 1993) Figure 2. Image of the loamy soil (Troeh and Thompson, 1993)

Hamblin i Stachowiak (1996) przedstawili cząstkę gleby opisując ją okręgiem oraz trójkątami (rys.3), które uogólniają kształty nieregularnych uwypukleń. Model pozwala w łatwy i szybki sposób wykonać pomiary cząstek, upraszczając je do figur płaskich.

Rysunek 3. Model cząstki gleby wg Hamblina i Stachowiaka (1996) Figure 3. Model of the soil fraction acc. to Hamblin and Stachowiak (1996)

Celem zobrazowania procesu zużywania elementów obrabiających glebową masę ścierną Goel i inni (2012) zaprezentowali model symulacyjny formacji grzbietów wzdłuż boków żłobienia powstałego na skutek zarysowania powierzchni stali przez cząstkę piasku (rys. 4). Kształt cząstek glebowej masy ściernej możliwy jest do określenia dopiero podczas specjalnie zaprogramowanych badań. Zatem celem pracy jest ocena geometrii ziaren frakcji żwiru, piasku i pyłu wraz z iłem wchodzących w skład wybranych rodzajów glebowej masy ściernej.

Rysunek 4. Model zużywania stali przez cząstkę kwarcu (Goel i in., 2012) Figure 4. Model of consuming steel by a fraction of quartz (Goel et al, 2012)

Metodyka badań

Obiektem badań były cztery, zróżnicowane składem granulometrycznym, glebowe masy ścierne :

- glina piaszczysta pylasta;
- piasek słabo gliniasty pylasty ;
- piasek luźny pylasty;
- piasek luźny.

Figure 5. Images of soil fractions 40 times enlargement, fractions of: a) gravel, b) sand, c) loam, d) dust

Oznaczenie składu granulometrycznego przeprowadzono zgodnie z klasyfikacją PTG 2008. Badaniom poddano pojedyncze ziarna poszczególnych frakcji glebowych. Wykonywano pomiary następujących wielkości (rys. 6):

- promień zewnętrzny okręgu opisanego na konturze ziarna ściernego;
- promień wewnętrzny okręgu wpisanego wewnątrz konturu ziarna;
- pole uwypukleń figur nieregularnych ziarna;
- obwód uwypukleń figur nieregularnych.

Badania przeprowadzono w Laboratorium Eksploatacji Katedry Budowy, Eksploatacji Pojazdów i Maszyn UWM w Olsztynie. Rozdział gleb na poszczególne frakcje wykonano przesiewaczem wibracyjnym LPzE-3e. Do badań przyjęto po 100 ziaren frakcji żwiru, piasku oraz pyłu z iłem. Ostatnie dwie frakcje zostały połączone uwzględniając ich zbliżone własności tribologiczne w aspekcie glebowej masy ściernej (Napiórkowski, 2005). Pomiar ziaren przeprowadzono z wykorzystaniem programu Motic Images Plus 2.0. współpracującym z mikroskopem laboratoryjnym Motic wyposażonym w kamerę cyfrową. Do oceny istotności różnic w geometrii ziaren frakcji glebowych poszczególnych gatunków gleb wykorzystano test Duncana oparty na "studentyzowanym" rozstępie.

Rysunek 6. Przykładowy sposób wykonywania pomiarów, gdzie: C1 – pomiar okręgu opisanego na cząstce; C2 – pomiar okręgu wpisanego w cząstkę; 11,12,13 – pomiary uwypukleń nieregularnych

Figure 6. Exemplary method of taking measurements, where: C1 – measurement of the circle inscribed in the fraction; C2 – measurement of the circle inscribed in the fraction; I1, I2, I3 – measurements of irregular protrusions

Analiza wyników badań

Na podstawie uzyskanych wyników z badań pomiarów promieni zewnętrznych i wewnętrznych cząstek, pól i obwodów figur nieregularnych (tab.1,2), a także przeprowadzonej analizy statystycznej, uzyskano istotne zróżnicowanie w wartościach średnich frakcji w poszczególnych glebach.

Tabela 1

Zestawienie wartości promieni zewnętrznych i wewnętrznych frakcji glebowych Table 1

The set of values of external radii and internal soil fractions

	Żwir	Piasek	Pył + ił					
Rodzaj gleby	Wartość średnia (odchylenie standardowe)							
	Promień zewnętrzny (µm)							
Piasek luźny pylasty	712,4 (107,9)	346,6 (82,2)	40,6 (13,1)					
Piasek luźny	889,6 (144,3)	351,3 (104,2)	42,9 (13,9)					
Piasek słabo gliniasty pylasty	895,1 (157,8)	444,2 (86,8)	44,2 (11,7)					
Glina piaszczysta pylasta	969,4 (357,2)	453,6 (105,5)	48,0 (15,8)					
	Promień wewnętrzny (µm)							
Piasek luźny pylasty	505,1 (85,5)	217,7 (92,4)	31,6 (10,1)					
Piasek słabo gliniasty pylasty	601,8 (103,1)	218,9 (73,3)	36,6 (10,2)					
Piasek luźny	664,8 (251,4)	281,2 (53,7)	37,8 (11,0)					
Glina piaszczysta pylasta	670,5 (117,6)	290,8 (77,3)	40,7 (15,6)					

Tabela 2

Zestawienie wartości pól i obwodów cząstek kształtów nieregularnych frakcji glebowych Table 2

$-\pi$		<i>r</i> .	1		· / · · ·		•	r	<i>r</i> 1		<i>r .</i> .		· ·	1 • 1		
	ha dat a	t 11/1	11100	Δt	tiala	a ano	OTROTIM'	towowood c	t ah	ana	tractions	01	INNOMI	lav coll	- +	vantiona
	IP SPL O	i vui	INPA	())	neiu	$\sim ana$		IEI ENLES U	$n \sim n$	une	TTUCHONS.	()	ITTEST			ruuuuu
				\sim	,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			1 2.0	up e	1	\sim				
											/	•/			•/	

	Żwir	Piasek	Pył + ił						
Rodzaj gleby	Wartość średnia (odchylenie standardowe)								
	Pole kształtów nieregularnych (µm ²)								
Piasek luźny pylasty	120714,5 (38799,9)	22185,73 (10712,4)	143,8 (61,0)						
Piasek luźny	161967,4 (49444,3)	24544,55 (7998,3)	149,9 (51,7)						
Piasek słabo gliniasty pylasty	168841,7 (93606,1)	31677,07 (13717,0)	154,3 (53,4)						
Glina piaszczysta pylasta	186019,4 (85672,8)	31801,80 (17652,2)	158,8 (49,3)						
	Obwód	(µm)							
Piasek luźny pylasty	2002,8 (557,5)	746,8 (216,8)	72,1 (38,6)						
Piasek słabo gliniasty pylasty	2043,6 (645.6)	819,2 (286,0)	77,2 (40,1)						
Piasek luźny	2484,3 (863,6)	1268,7 (361,0)	79,6 (36,7)						
Glina piaszczysta pylasta	2780,3 (1337,9)	1338,7 (344,7)	82,6 (36,9)						

Dla frakcji żwiru największe promienie okręgu zewnętrznego i wewnętrznego stwierdzono w glinie piaszczystej pylastej i były one większe odpowiednio o 36 i 32% w stosunku do gleby o najniższych wartościach tych promieni tj. piasku luźnego pylastego (rys.7). Pola powierzchni figur nieregularnych dla gliny piaszczystej były o 54% większe niż dla piasku luźnego (rys. 8). Takie same zależności można zauważyć także w wartościach obwodów figur nieregularnych dla tej frakcji.

Rysunek 7. Charakterystyka promieni zewnętrznych i wewnętrznych frakcji żwiru Figure 7. Characteristic of external radii and internal gravel fractions

Rysunek 8. Średnie wartości pól kształtów nieregularnych poszczególnych frakcji badanych gleb

Figure 8. Average values of fields of irregular shapes of particular fractions of the investigated soils W przypadku pozostałych frakcji uzyskano także istotne zróżnicowanie w wartościach średnich mierzonych wielkości geometrycznych (rys. 9-10). Różnice w wartościach promieni zewnętrznych i wewnętrznych frakcji piasku w poszczególnych glebach zawierały się w przedziale 30-33%. Natomiast w przypadku pyłu i iłu wynosiły 18% dla promienia zewnętrznego i 28% dla promienia wewnętrznego. Frakcja piasku charakteryzuje się także znaczną nieregularnością. Zróżnicowanie pól kształtów nieregularnych w poszczególnych glebach wynosiło 43%, zaś długości obwodów kształtów nieregularnych różniły się aż w 79%. Wartości te, w przypadku frakcji iłu i pyłu były znacznie mniejsze i zwierały się w przedziale 10-14%.

Rysunek 9. Charakterystyka frakcji promieni zewnętrznych i wewnętrznych piasku Figure 9. Characteristic fractions of external and internal fractions of sand

Rysunek 10. Charakterystyka frakcji promieni zewnętrznych i wewnętrznych pyłu i iłu Figure 10. Characteristic fraction of external and internal radii of dust and loam

Tabela 3 Wyniki testu Duncana. Podział na grupy jednorodne Table 3 Duncan test results. Division into uniform groups

		Żw	ir	Pias	ek	Pył + ił		
Charakterystyka geometryczna	Jednostka	Grupy	Średnia dla grup	Grupy	Średnia dla grup	Grupy	Średnia dla	
		jeanoroane	ana grup	jeanoroane	uiu grup	jeanoroane	grup	
Description of the sector of t		(1,2,4)	918,0	(2,3)	448,9	(2, 3, 4)	45,0	
Promien zewnętrzny	μm	(3)	712,8	(1, 4)	349,0	(1, 2, 4)	42,6	
Dramiań warnater		(1,2,4)	645,7	(2,3)	286,0	(2, 3, 4)	38,4	
Promien wewnęuzy	μm	(3)	505,1	(1,4)	218,3	(1,2)	34,1	
Obwód kształtów nieregularnych	μm	(1,3) (2,4)	2228,9 2766,2	(2) (3) (1,4)	1598,2 1469,8 755,6	(1,4,2) (1,3)	77,6 38,3	
Pole kształtów	2	(1,3)	158431,5	(2,3)	38967,7	(1,4,2)	171,3	
nieregularnych	μm	(2,3,4)	188619,3	(1,4)	24558,8	(1,3)	38,3	

1 - Glina piaszczysta pylasta, 2 - Piasek słabo gliniasty pylasty, 3 - Piasek luźny pylasty, 4 - Piasek luźny

Podsumowanie

Cząstki ścierne wyraźnie różnią się między sobą wielkością i kształtem, w tym stopniem zaokrąglenia i nieregularnością w zależności od rodzaju gleby. We wszystkich frakcjach badane gleby różniły się od siebie promieniami ziaren, charakteryzowały się zróżnicowaną liczbą kształtów nieregularnych oraz różnymi wartościami pól i obwodów. W wielu przypadkach były to różnice istotnie statystycznie (tabela 3). Wskazuje to na konieczność uwzględnienia, w procesie doboru właściwości warstwy wierzchniej elementu roboczego do danego rodzaju gleby, obok składu granulometrycznego oraz odczynu gleby, także geometrii ziaren glebowych. Kształt ziaren ma bezpośredni wpływ na wartość powierzchni właściwej gleby, a tym samym powierzchni tarcia. Wpływa także na przebieg dominujących procesów zużywania. Zaokrąglone kształty frakcji glebowych wskazują na stosunkowo niewielką powierzchnię tarcia, a także zwiększoną liczbę stopni swobody ziaren w procesie tarcia. Podczas zużywania dominują procesy zmęczeniowe, spowodowane wielokrotnym oddziaływaniem zaokrąglonych ziaren glebowych na warstwę wierzchnią.

W przypadku frakcji nieregularnych o dużym zróżnicowaniu wartości promieni zewnętrznych i wewnętrznych, pól powierzchni kształtów nieregularnych i długości ich obwodów, wzrasta znacznie powierzchnia tarcia, zmniejsza się natomiast możliwość przemieszczania się cząstek glebowych. Zaczynają dominować procesy intensywnego zużywania mechanicznego, tj. mikroskrawanie i bruzdowanie. Dokładne poznanie zależności pomiędzy kształtem frakcji glebowych, a procesem zużywania elementów roboczych obrabiających glebę będzie możliwe w specjalnie zaprogramowanych badaniach.

Literatura

- Bayhan, Y. (2006). Reduction of wear via hardfacing of chisel ploughshare. *Tribology International*, 39, 570-574.
- Brady, N.C. (1990). The Nature and Properties of Soils. Nowy Jork, Macmillan Publishing Co. ISBN 10-00-2313-35-03.
- Hamblin, M.G.; Stachowiak, G.W. (1996). Description of abrasive particle shape and its relation to two-body abrasive wear. *Tribology Transactions*, 39, 803-810.
- Horvat, Z.; Filipovic, D.; Kosutic, S.; Emert, R. (2008). Reduction of mouldboard plough share wear by a combination technique of hardfacing. *Tribology International*, 41, 778-782.
- Goel, G.; Cherukuri, H.P.; Toro, A. (2012). A numerical study of abrasive wear in tillage tools due to soil-tool interaction. *Simulia*, Rhode Island Convention. Pozyskano z: http://imechanica.org/files/ Goel_UNC_final_3252012.pdf
- Kałdoński, T. (2008). Badanie i modelowanie procesów zużywania ściernego hydraulicznych par precyzyjnych. Warszawa, Wojskowa Akademia Techniczna. ISBN 9788389399892.
- Kostencki, P. (2010). Nacisk gleby na powierzchnię natarcia lemiesza płużnego a ubytek materiału z tej powierzchni. *Inżynieria Rolnicza*, 4(122), 127-133.
- Napiórkowski, J. (2010). Analiza właściwości glebowej masy ściernej w aspekcie oddziaływania zużyciowego. *Tribologia*, 5, 53-62.
- Napiórkowski, J. (2005). Zużyciowe oddziaływanie gleby na elementy robocze narzędzi rolniczych. Inżynieria Rolnicza, 12(72), Rozprawa habilitacyjna. Kraków, PTIR.
- Napiórkowski, J.; Pękalski, G.; Kołakowski, K. (2012). Badanie struktur i zużywania powłok napawanych w glebowej masie ściernej. *Tribologia*, 3, 111-117.
- Szymańska-Czaja, M. (2007). Przegląd metod oceny właściwości geometrycznych odpadowych surowców mineralnych. Górnictwo i Geoinżynieria, 3/1(31), 523-528.
- Tenenbaum, M. M. (1990). O widach, processah i mehanizmah abraziwnowo iznasziwanija. Dolgowiecznosc truszichsia detalej maszin, 5, 202-215.
- Troeh, F.R.; Thompson, L.M. (1993). Soils and Soil Fertility. Nowy Jork, Oxford University Press, ISBN 10-01-9508-32-88.
- Yazici, A. (2011). Investigation of the reduction of mouldboard ploughshare wear through hot stamping and hardfacing processes. *Turkish Journal of Agriculture and Forestry*, 35, 461-468.

ANALYSIS OF GEOMETRY OF GRAINS OF SOIL ABRASIVE MASS

Abstract. Analysis of the geometry of soil grains for four types of soil abrasive mass was presented. Assessment of the geometry was carried out with the use of a stereometric microscope with the use of Motic Images Plus 2.0 programme. External radius of the circle inscribed in the contour line of the abrasive grain, internal radius of the circle inscribed in the contour of a grain, fields of protrusions of irregular figures of a grain and circumferences of protrusions of irregular figures were assessed. Soil fractions of gravel, sand and loam and dust in sandy and clay soils were investigated. The obtained results and statistical calculations enabled determination of significant differences in the geometry of abrasive mass of grains and their variable shape in particular soils. The smallest differences of fractions were determined for fraction of dust and loam (at the maximum 28%), whereas the biggest for sand fractions up to 79%. It proves necessary to include also geometry of soil grains in the selection process of properties of the working element surface layer to a specific type of the processed soil, next to the granulometric composition and reaction of soil. The objective of the paper was to assess geometry of grains of gravel fraction, sand and dust along with loam, which compose the selected types of soil abrasive mass.

Key words: soil abrasive mass, geometry of grain, abrasion, stereometric microscope.

Adres do korespondencji:

Jerzy Napiórkowski; e-mail: napj@uwm.edu.pl Katedra Budowy, Eksploatacji Pojazdów i Maszyn Uniwersytet Warmińsko-Mazurski w Olsztynie ul. Oczapowskiego 11 10-756 Olsztyn