

INŻYNIERIA ROLNICZA Agricultural Engineering

ISSN 1429-7264

Polskie Towarzystwo Inżynierii Rolniczej http://www.ptir.org

2013: Z. 1(141) T.1

s. 31-38

WPŁYW ROZWINIĘCIA POWIERZCHNI EKSTRUDATU NA DYNAMIKĘ SORPCJI WODY W RÓŻNYCH WARUNKACH PRZECHOWYWANIA

Adam Ekielski, Małgorzata Powałka, Tomasz Żelaziński Katedra Organizacji i Inżynierii Produkcji, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

Streszczenie. W badaniach przedstawiono zmiany dynamiki wchłania wody przez ekstrudaty zbożowe w zmiennych warunkach klimatycznych. Badano próbki ekstrudatu kukurydzianego, wytworzonego na ekstruderze jednoślimakowym. Uzyskane próbki przechowywano w komorze klimatycznej, w zmiennych warunkach temperatury, wilgotności względnej powietrza oraz czasu przechowywania. Do określenia rozwinięcia powierzchni próbki wykorzystano system analizy obrazu, w którym wyznaczano współczynnik normalizujący R_{AE} . Badania przeprowadzono dla trzech poziomów rozwinięcia powierzchni próbki oraz trzech zakresów wilgotności, temperatury i czasu przebywania w komorze klimatycznej. Poszczególne poziomy zmiennych zakodowano jako wartości liczbowe -1,0,1 i poddano analizie wariancji ANOVA. Zaobserwowano istotny wpływ rozwinięcia powierzchni ekstrudatu na szybkość przechodzenia próbki w stan obniżonej sorpcji.

Słowa kluczowe: ekstruzja, analiza obrazu, sorpcja wody, rozwinięcie powierzchni

Wprowadzenie

Jedną z zalet produktów spożywczych, otrzymywanych w technologii ekstruzji, jest możliwość uzyskania, wyrobów o wysokich walorach odżywczych i łatwych do przechowywania (Ekielski i in., 2007; Wojtowicz i Mościcki, 2009; Mościcki i in., 2007). Zastosowanie technologii ekstruzji jest coraz bardziej popularne i uzasadnione, biorąc pod uwagę fakt, że duża część odbiorców żywności, coraz częściej zwraca uwagę na zawarte w niej środki konserwujące. Dlatego na rynku pojawiła się znaczna grupa towarów wytwarzanych bez dodatku tych składników. Istotnym w tych produktach jest utrzymanie niskiego poziomu wody aktywnej (Janowicz i in., 2007). Ekstrudaty z racji porowatości i znacznego rozwinięcia powierzchni cechują się dużą higroskopijnością (Cheyen i in., 2004). Zwykle zabezpieczenie w postaci opakowania wystarcza do zapewnienia ochrony produktu przed wzrostem wilgotności. Otwarcie opakowania i wystawienie ekstrudatu bezpośrednio na działanie czynników, takich jak wysoka wilgotność i temperatura, może powodować szybką zmianę wilgotności produktu, pozbawiając go akceptowalnych cech sensorycznych (Biller, 2006; Ekielski i in., 2005; Galus i Lenart, 2011) i zwiększając ryzyko pojawienia się grzybów i bakterii na jego powierzchni (Marzec i Lewicki, 2004).

Sorpcja pary wodnej zależy od składu i budowy wewnętrznej ekstrudatu, ale również od pola powierzchni kontaktu z otoczeniem (Sokołowska i in., 2008; Kulchan i in., 2010). Techniki oceny stosowane do obliczenia pola powierzchni produktów o zróżnicowanym kształcie wykorzystują sorpcję gazów lub pary, która jest proporcjonalna do wyznaczanego pola powierzchni i właściwości materiału, z którego została wykonana powierzchnia.

Opracowanie modelu zmian dynamiki wchłaniania wody może pozwolić na opracowanie modelu obliczeń czasu przydatności produktu do spożycia w zmiennych warunkach klimatycznych. W pracy zaproponowano metodę obliczenia zdolności wchłaniania wody wyznaczoną w zależności od parametrów środowiska i rozwinięcia linii przekroju poprzecznego ekstrudowanych próbek.

Celem pracy było zbadanie wpływ rozwinięcia powierzchni bocznej ekstrudatów kukurydzianych na ich zdolność do pochłaniania wody w czasie przechowywania w warunkach zmiennej wilgotności i temperatury.

Metodyka badań

Materiałem badawczym był ekstrudat uzyskany z kaszki kukurydzianej, zakupionej w firmie Silesian Grain (wilgotność kaszki ok. 13,2%, tłuszcz całkowity 0,7%, białko całkowite ok. 8,3%, skrobia ok. 75%), wytworzony w jednoślimakowym ekstruderze KZM-2, L/D=6,5. Surowiec był nawilżany do wilgotności 18% i podawany do ekstrudera w ilości 50 kg/h przez podajnik ślimakowy o regulowanej prędkości obrotowej. Ekstrudat wytłaczany był przez otwór o przekroju kołowym o średnicy d=5 mm. Prędkość obrotową obcinarki ustawiono tak, aby długość otrzymywanych próbek wynosiła około 4 cm. Stabilność przebiegu procesu uzyskano przy prędkości obrotowej ślimaka n=200 obr \cdot min⁻¹ i temperaturze głowicy 125°C. Próbki ekstrudatu suszono do uzyskania wilgotności 8% w suszarce komorowej w temperaturze 104°C i ważono na wadze laboratoryjnej RAD-WAG WPS 600/C z dokładnością odczytu 0.001 g.

Eksperyment polegał na poddaniu próbek działaniu trzech czynników: temperatury (T_e) , wilgotności względnej (R_{He}) i czasu oddziaływania powyższych warunków (t_e) . Szczegółowe parametry doświadczenia zamieszczono w tabeli 1.

Temperatura	Wilgotność	Czas przebywania	Współczynnik rozwinięcia
(°C)	względna (%)	w komorze (godz.)	powierzchni (-)
25	40	1	Powierzchnia gładka $R_{AE} = 1,07 - 1,10$
30	60	10	Powierzchnia średnia $R_{AE} = 1,12 - 1,15$
35	80	24	Powierzchnia chropowata R_{AE} = 1,18 – 1,33

Tabela 1 Parametry doświadczenia Table 1 Parameters of the experiment

Wpływ rozwinięcia powierzchni...

Zmiany masy próbek na skutek wchłaniania wilgoci z powietrza pozwoliły na wyznaczenie procentowej sorpcji (S_E). Do badań wykorzystano komorę klimatyczną typu KBK-30W (rys. 1), wyposażaną w półprzewodnikowe elementy Peltiera oraz wentylator (ich zadaniem było wymuszenie nastawionej temperatury w komorze i uzyskanie temperatur mniejszych od temperatury otoczenia), a także moduł głowicy ultradźwiękowej i moduł zamrażarki do wytwarzania pary wodnej.

Rysunek 1. Widok próbki ekstrudatu kukurydzianego w komorze roboczej oraz próbek przygotowanych do obliczenia współczynnika R_{AE}

Figure 1. View of the maize extrudate sample in the working chamber and the samples prepared for calculating R_{AE} coefficient

Zważone próbki suszono w temperaturze pokojowej przez okres 24 godz., a następnie przecinano na trzy części, dzieląc je na długości 1/3 i 2/3 całkowitej długości próbki. Tak otrzymane powierzchnie przekroju fotografowano za pomocą kamery CCD KP – FD30 firmy HITACHI w komorze bezcieniowej, oświetlonej świetlówkami światła dziennego TL – D De Luxe Pro 18W/965, o temperaturze barwowej 6500 K firmy Philips, i podawano analizie wizyjnej, wykorzystując program Visio Assistant 7.1. Wspomniany program miał możliwość obliczenia współczynnika rozwinięcia powierzchni R_{AE} , w tym wypadku powierzchni kołowej według poniższych wzorów (1, 2, 3, 4, 5).

$$R_{AE} = \frac{Op}{Ok} \tag{1}$$

gdzie:

Op – zmierzony obwód przekroju ekstrudatu,

Ok – obwód okręgu o tym samym polu powierzchni, co pole powierzchni badanej próbki.

Wobec tego promień okręgu wynosił:

$$R = \sqrt{\frac{A_E}{\pi}} \tag{2}$$

 A_E – obwód okręgu:

$$Ok = 2 \cdot \pi \cdot \sqrt{\frac{A_E}{\pi}} = 2 \cdot \sqrt{\pi \cdot A_E}$$
(3)

$$R_{AE} = \frac{Op}{2 \cdot \sqrt{\pi \cdot A_E}} \tag{4}$$

Wyniki pomiarów rozwinięcia powierzchni dla każdej próbek zostały uśrednione wg wzoru:

$$\overline{R}_{AE} = \frac{\left(\sum_{i=1}^{3} R_{AEi}\right)}{3} \tag{5}$$

Uzyskane wartości współczynnika rozwinięcia powierzchni ekstrudatu R_{AE} zostały wprowadzone do doświadczenia razem z wielkościami niezależnymi: R_{He} , t_e oraz T_e . Eksperymenty zostały przeprowadzone w przypadkowej kolejności, aby zminimalizować wpływ niejednoznacznego wpływu kolejnych pomiarów.

Do projektowania eksperymentu wykorzystano Centralny Plan Kompozycyjny (CPK) o liczbie wielkości wejściowych 4, liczbie bloków 1 i liczbie układów 26 + 3 układy w centrum. Poszczególne poziomy zmiennych zakodowano do wartości liczbowych jako wartości -1,0,1. W planie zastosowano środkowe punkty gwiezdne. Plan wygenerowano przy wykorzystaniu programu Statistica 10, który dalej posłużył do uzyskania powierzchni odpowiedzi. Do analizy istotności zmiennych zastosowano analizę wariancji ANOVA.

Wyniki badań

Na podstawie wygenerowanego planu badań obliczono równania powierzchni odpowiedzi o współczynniku determinacji $R^2 = 0,831$ i błędzie średnio kwadratowym MSE = 0,143. Powstałe w ten sposób powierzchnie odpowiedzi pozwoliły na dokładną analizę zjawiska sorpcji wilgoci z powietrza przez ekstrudowane produkty.

Na poniższych wykresach przedstawiono zmiany dynamiki sorpcji wilgoci przez ekstrudat kukurydziany w zmiennych warunkach temperaturowych i wilgotnościowych. Stwierdzono, że ekstrudaty posiadające zróżnicowaną powierzchnię pofałdowania charakteryzowały się różnymi właściwościami sorpcyjnymi (rys. 2). Największą zdolnością wchłaniania wilgoci z powietrza charakteryzowały się ekstrudaty o największym stopniu pofałdowania powierzchni z przedziału współczynnika R_{AE} =1,18-1,33 . Ekstrudaty gładkie, o równomiernej strukturze (R_{AE} =1,07-1,10), w podobnych warunkach klimatycznych wchłaniały wilgoć w mniejszym stopniu. Zmiany sorpcji wilgoci obserwowano w całym przedziale czasowym zakładanego doświadczenia.

- Rysunek 2. Wpływ rozwinięcia powierzchni Rysunek 3. Wpływ wilgotności powietrza i czasu na właściwości sorpcyjne ekstrudatów (wilgotność powietrza 60%, temperatura $30^{\circ}C$)
- Figure 2. The effect of surface development and sorption time on the sorption properties of the extrudates at humidity of 60% and temperature $30^{\circ}C$

time on the sorption properties of the extrudates (30°C, $R_{AE} - 1.07$)

Istotnym czynnikiem decydującym o wielkości sorpcji wilgoci była zarówno wilgotność powietrza jak i czas przechowywania próbek w komorze klimatycznej. Na wykresach (rys. 3, 4, 5) można zaobserwować, że w warunkach wilgotności powietrza R_{He} – 80%, wraz ze wzrostem czasu przebywania próbek w komorze obserwowano najbardziej dynamiczny wzrost sorpcji wilgoci. W tych warunkach, po osiągnięciu zakładanego czasu $t_e - 24$ godzin, próbki osiągały również największą wartość sorpcji, która dalej wzrastała. W tym przypadku mogło to świadczyć, że próbki nie zostały w pełni nasycone wilgocia. Takie zachowanie ekstrudatu obserwowano przy wszystkich analizowanych powierzchniach ekstrudatu. Przy najniższej zakładanej wilgotności powietrza R_{He} – 40%, zmiany te były mniej intensywne, a próbki już po około $t_e - 10$ godzinach przebywania w komorze wykazywały mniejszą zdolność do absorbowania wilgoci. Można stwierdzić, że próbki po tym czasie stabilizowały się, o czym może świadczyć niewielkie przegięcie powierzchni wykresów w dół po osiągnięciu czasu ekspozycji próbek $t_e>10$ godzin (rys. 3, 4, 5). Takie zachowanie mogło być z kolei spowodowane ograniczeniem w przepływie wilgoci w wyniku deformacji ścian tworzących pory wewnątrz ekstrudatu.

 $\mathrm{S_{E}}^{=-23,658+0,12*t_{e}-0,003*t_{e}^{2}+0,019*\mathrm{R_{He}}+0,000096*\mathrm{R_{He}}^{2}+22,825}$

Rysunek 4. Wpływ wilgotności powietrza i Rysunek 5. Wpływ wilgotności powietrza czasu na właściwości sorpcyjne ekstrudatów (temperatura 30°C, $R_{AE} - 1,15$) Figure 4. The effect of air humidity and Figure 5. The effect of air humidity and storage time on the sorption properties

of the extrudates (30°C, R_{AE} - 1.15)

 S_{E} =-23,658+0,12* t_{e} -0,003* t_{e} ²+0,019* R_{He} +0,000096* R_{He} ²+22,882

- i czasu na właściwości sorpcyjne ekstrudatów (temperatura 30°C, R_{AE} – 1,33)
- storage time on the sorption properties of the extrudates (30°C, R_{AE} - 1.33)

S_E=-23,658+0,1204*t_e-0,0028*t_e²-0,149*T_e+0,003*T_e²*26,022

- Rysunek 6. Wpływ temperatury i czasu na Rysunek 7. Wpływ temperatury i czasu na właściwości sorpcyjne ekstrudatów (wilgotność 60%, $R_{AE} - 1,07$)
- storage time on the sorption properties of the extrudates (humidity 60%, R_{AE} – 1.07)

 $S_{\text{E}}\text{=-23,658+0,019*}\text{R}_{\text{He}}\text{+}0,000096*}\text{R}_{\text{He}}\text{-}0,149*}\text{T}_{\text{e}}\text{+}0,003*}\text{T}_{\text{e}}^{2}\text{+}25,801$

- właściwości sorpcyjne ekstrudatów (czas $10 \ godz., R_{AE} - 1,33)$
- Figure 6. The effect of air temperature and Figure 7. The effect of temperature and storage time on the sorption properties of the extrudates (time 10 h., $R_{AE} - 1,33$)

Wpływ rozwinięcia powierzchni...

Na rysunku 6 przedstawiono powierzchnie odpowiedzi zmian sorpcji w funkcji temperatury i czasu przebywania ekstrudatu w komorze przy wilgotności R_{He} – 60%. Podobnie jak na wykresach (rys. 3, 4, 5) widać wpływ czasu przebywania na zmiany sorpcji wilgoci. Przy zadanej wilgotności R_{He} – 60% nie zaobserwowano jednak istotnych zmian wpływu temperatury powietrza na właściwości sorpcyjne próbek. Na rysunku 7 przedstawiono zmiany sorpcji wilgoci w funkcji temperatury i wilgotności powietrza. Na wykresie można zauważyć, że wzrost sorpcji istotnie zwiększa się dopiero powyżej wilgotności R_{He} – 60% i osiąga wartość maksymalną przy wilgotności R_{He} – 80% i temperaturze T_e – 35°C.

Spostrzeżenie to może być niezwykle istotne z punktu widzenia przechowalnictwa tego typu wyrobów. Prawdopodobnie w ekstrudatach w warunkach podwyższonej temperatury i wilgotności zżelifikowana skrobia charakteryzuje się zmienną sorpcją.

Wnioski

- 1. Sorpcja wilgoci ekstrudowanych wyrobów jest proporcjonalna do powierzchni pofałdowania ekstrudatu.
- Zmiany temperatury wewnątrz komory w zakresie od 25–35°C mają niewielki wpływ na zmiany sorpcji wilgoci próbek.
- Ekstrudowane produkty są wrażliwe na zmiany wilgotności powietrza, o czym świadczył szybki wzrost sorpcji w pierwszych 10 godzinach ekspozycji próbek w komorze klimatycznej.

Literatura

- Biller, E. (2006). Dynamika zmian barwy podczas obróbki termicznej pieczywa pszennego w zależności od czasu miesienia ciasta. *Inżynieria Rolnicza*, 7(82), 43-50.
- Cheyen, A.; Barnes, J.; Gedney, S.; Wilson, D. I. (2004). Exstrusion behaviour of cohesive potato starch pastes: II Microstructure – process interactions. *Journal of Food Engineering*, 66, 13–24.
- Ekielski, A.; Biller, E.; Żelaziński, T. (2005). Wpływ wybranych parametrów procesu ekstruzji na zmiany barwy ekstrudatu. *Inżynieria Rolnicza*, *10*(70), 65-73.
- Ekielski, A.; Majewski, Z.; Żelaziński, T. (2007). Effect of Extrusion Conditions on Physical Properties of Buckwheat-Maize Extrudate. *Polish Journal of Food and Nutrion Sciences*, 57, 2(A), 57-61.
- Galus, S.; Lenart, A. (2011). Wpływ białka i glicerolu na kinetykę adsorpcji pary wodnej przez powłoki sojowe. *Postępy Techniki Przetwórstwa Spożywczego, 1*, 9-13.
- Janowicz, M.; Lenart, A.; Sikora, K. (2007). Adsorpcja pary wodnej przez ciastka biszkoptowe wielowarstwowe. *Inżynieria Rolnicza*, 5(93), 205-211.
- Kulchan, R.; Suppakul, P.; Boonsupthip, W. (2010). *Texture of glassy tapioca-flourbased baked product as a function of moisture content*. In: Reid, D.S., Sajjaanantakul, T., Lillford, P.J., Charoenrein, S. (Eds.), Water Properties in Food, Health, Pharmaceutical and Biological Systems: ISOPOW 10. Wiley-Blackwell, New York.
- Lewicki, P. P. (1998). A three parameter equation for food moisture sorption isotherms, *Journal of Food Process Engineering*, 21, 127-144.
- Marzec, A.; Lewicki, P. (2004). Sorption properties of crunchy bakery products. Żywność, Technologia, Jakość, 4(41), 44–56.

- Mościcki, L.; Mikrus, M.; Wojtowicz, A. (2007). Technika ekstruzji w przemyśle rolno-spożywczym. Warszawa, PWRiL, ISBN 9788309010272.
- Sokołowska, Z.; Jamroz, J.; Bańka, P. (2008). Apparent surface area of selected meal extrudates. *International Agrophysics*, 22, 75-80.
- Wójtowicz, A.; Mościcki, L. (2009). Influence of extrusion-cooking parameters on some quality aspects of precooked pasta-like products. *Journal of Food Science*, 74(5), 226-233.

THE EFFECT OF THE SURFACE DEVELOPMENT OF EXTRUDATE ON THE DYNAMICS OF WATER SORPTION IN VARIOUS STORAGE CONDITIONS

Abstract. Changes of the dynamics of water absorption by grain extrudates in variable climatic conditions were presented in the research. Maize extrudate samples produced on the one-screw extruder were tested. The obtained samples were stored in a climatic chamber in variable conditions of temperature, relative humidity of air and storage time. For determination of the surface development of a sample, the image analysis system was applied in which normalizing coefficient R_{AE} was determined. Tests were carried out for three levels of surface development of a sample and three scopes of moisture, temperature and time of staying in the climatic chamber. Particular levels of variables were coded as a numerical values - 1,0,1 and were subjected to analysis of variance ANOVA. A significant impact of the surface development of the extrudate on the speed of achieving the state of lowered sorption by the sample was reported.

Key words: extrusion, image analysis, water sorption, surface development

Adres do korespondencji:

Adam Ekielski; e-mail: adam_ekielski@sggw.pl Katedra Organizacji i Inżynierii Produkcji Szkoła Główna Gospodarstwa Wiejskiego ul. Nowoursynowska 164 02-787 Warszawa