

Scientific quarterly journal e-ISNN 2449-5999

Agricultural Engineering

2015: 1(153):95-106

Homepage: http://ir.ptir.org

DOI: http://dx.medra.org/10.14654/ir.2015.153.110

ECONOMIC ANALYSIS OF NON-LITTER CATTLE BARNS

Kamila Mazur^{*}, Jan Barwicki, Marcin Majchrzak, Kinga Borek, Witold Jan Wardal

Institute of Technology and Life Sciences, Warsaw Branch, Poland *Contact details: ul. Rakowiecka 32, 02-532 Warsaw, e-mail:k.mazur@itp.edu.pl

ARTICLE INFO	ABSTRACT
Article history: Received: January 2015 Received in the revised form: February 2015 Accepted: February 2015	The objective of the article was to show exploitation costs from three cattle barns in a non-litter loose housing system. The method was based on the multi criteria approach which referred to following factors: technical, technological (mainly energetic and labour), economic (costs of energy, labour, investment). Within technical assessment, the building abarentriging was carried out which referred to the second
Keywords: energy inputs labour inputs exploitation costs loose housing	Then, the building characteristics was carried out which pertained to the areas of productivity, building, laying and cubage. In order to carry out technological assessment, all methods of mechanization were analysed and as a result, energetic, energy and investment inputs were obtained. Exploitation costs of machinery, equipment and cattle barn buildings were calculated according to the methodology devel- oped in IBMER [Institute for Construction, Mechanization and Elec- trification in Agriculture]. The lowest exploitation cost was in a cattle barn with a traditional "herring bone" milking unit and amounted to 2 132.01 PLN·year ⁻¹ ·LU ⁻¹ . The highest exploitation costs amounting to 2 670.65 PLN·year ⁻¹ ·LU ⁻¹ , were in a cattle barn with one milking robot and the lowest herd size.

Introduction

Adapting buildings, barns and their equipment to the requirements of animal welfare, environmental protection, with ensuring production profitability is a necessary condition for sustainable development in view of the intensification of production (Romaniuk and Mazur, 2014; Mazur, 2012). The overview of literature leads to the conclusion that there are no studies, which fully describe the problem of impact of the applied solutions on the milk production costs in non-littered cattle barns, concerning buildings and their equipment with machinery. The analysis contained the human labour inputs, electrical and mechanical energy inputs, which constituted the basis for calculation of exploitation costs.

Till now, exploitation costs in agricultural production have been the objectives for studies carried out by many researchers (Freiberger et al., 2005, Jucherski and Król, 2011, Majchrzak, 2013, Naes et al., 2010, Muzalewski 2010, Naess and Stokstad 2010, Szulc, 2009; Szulc and Markiewicz, 2010). All these publications only describe chosen technological treatments and their costs, but none of them takes into account total exploitation costs of machinery, equipment and buildings.

The objective of research

The main objective of the performed research was to analyze the influence of technological solutions in non-littered cattle barns on labour, energy inputs and milk production costs.

The fragmentary objectives were as follows:

- determination of investment costs of buildings, equipment and machinery for technological treatment in milk production such as: milking and milk cooling, preparation of feed and feed discharge, manure removal, its storage and other works;
- determination of labour input and the mechanization level in milk production, in particular cattle barns;
- determination of electric and mechanical energy inputs,
- determination of exploitation costs of buildings and equipment for mechanization of all technological treatments.

The scope of research

Among many solutions three free-stall cattle barns were chosen in view of the possibility of mechanization and automation of all technological treatments.

The scope of research covered three cattle barns, which jointly met the following input conditions:

- herd size above 80 LU,
- at least 4th level of mechanization,
- milk yield in herd above 8000 dm³ milk in extra class.

In particular, the scope of research consisted of such elements as:

- technical: description of buildings, construction, mechanization of technological treatments in milk production machinery and equipment, including three robots for milking, feed scraping and cleaning of slatted floor;
- *technological*: labour inputs, electric and mechanical energy inputs,
- economic: investment costs, electric energy costs, mechanical energy costs, labor costs, exploitation costs.

Methodology

The field tests were conducted by a direct moderated interview method, a picture of a working day was taken, and a timing scheme was made. In all buildings the same activities within a year were performed. Unitary exploitation costs of buildings and equipment with machinery taking part in mechanization of four treatments were the sum of the unitary maintenance and use costs. Equations (1) to (3) show the method of calculation of these costs (Muzalewski, 2010; Gazzarin and Lips, 2013; Gazzarin and Hilty, 2002).

$$C_e = \frac{C_m + C_{us}}{N} \quad (PLN \cdot LU^{-1} \cdot year^{-1})$$
(1)

- c_e exploitation costs, (PLN· year⁻¹)
- C_m costs of maintenance, (PLN· year⁻¹)
- C_{us} operating costs, (PLN· year⁻¹)
- N number of Livestock Units (Muzalewski 2010, Gazzarin and Hilty, 2013; Gazzarin and Lips, 2002)

Costs of maintenance:

Costs of maintenance (C_m) were the sum of amortization costs of buildings, machinery and their insurance (eq.2)

$$C_{\rm m} = \frac{C_{ib}}{T_b} + \sum \frac{C_{im}}{T_m} + C_{\rm ins}^{\rm b} + C_{ui} \quad (\text{PLN-year}^{-1})$$
(2)

C_{ib} – replacement value of buildings, (PLN)

 T_{i} – the assumed stability of the building, (number of years)

 C_{ins}^{b} – insurance costs of building, (PLN·year⁻¹)

 C_{i_m} – price (value) replacement of machinery or equipment, (PLN)

 T_m – the assumed stability of the machinery, (number of years)

 C_{ui} – costs of insurance of machinery and equipment, (PLN·year⁻¹) (Muzalewski 2010)

Operating costs:

$$C_{u} = C_{ee}^{b} + C_{r}^{b} + C_{ee}^{m} + C_{me} + C_{r}^{m} + C_{L} (PLN \cdot year^{-1})$$
(3)

 C_{ij} – operating costs, (PLN·year⁻¹)

 C_{ee}^{b} – costs of electrical energy of buildings, (PLN·year⁻¹)

$$C_r^b$$
 – costs of repairs in buildings, (PLN·year⁻¹)

 C_{ee}^{m} – costs of electrical energy of machinery and equipment for mechanization, (PLN·year⁻¹)

 C_{me} – costs of mechanical energy, (PLN·year⁻¹)

$$C^{m}$$
 – costs of repair of machinery and equipment, (PLN·year⁻¹)

C_L – costs of labour inputs, (PLN·year⁻¹) (Muzalewski 2010)

Research results

The farms tested were located in Podlaskie (1 cattle barn) and Mazowieckie Voivodships (2 cattle barns). The size of herds was between 83 and 170 LU (Livestock Units). The milk yield was from 8500 to 9600 liters of milk in extra class. These cattle barns were characterized with at least fourth level of mechanization, i.e. diurnal human labour inputs below 10 working minutes per LU. In two cattle barns milking was conducted by milking robots (Automatic Milking System or Voluntary Milking System), one of them was equipped with a traditional dairy room. The milk cooling was provided in milk tanks, which were situated in milk rooms.

The cattle barns had a separated feeding corridor, on which feed was discharged by mixer wagons with the use of tractors, forage was in the PMR system (Partly Mixed Ratio). A supplementary dose of concentrates was provided in milking robots (2 barns) or in a feeding station (1 barn). The slurry was in deep channels under slatted floor, which was situated in manure-walking alleys, from which it was periodically pumped out. In all tested objects cows were in a non-littered area. The characteristic of the investigated farms and barns concerning the methods of mechanization of particular treatments was presented in Table 1.

Table 1

	LU	Mechanization of treatments: I – milking and milk cooling, II – feeding, III – removing and storing of natural manure; IV – other works					
No	milk	Ι	II	III	IV		
of barn	yield	type of	feeding waggon,	type of manure, power of	hoof knife		
01 Uaiii	(dm^3)	dairy unit	- company, capacity/	tractors engine + capacity	power/		
		capacity of	power of engine /	of slurry spreader	swinging brushes		
		milk cooler	the technological line for		power		
		(dm^3)	concentrates feeding				
		"herring	Siloking 12 m ³ /	slurry, deep channels,	electrical		
1	109	bone"	110 kW/	tractor 56 kW + slurry	0.25 kW		
1	9600	2x5(10)	2 feeding stations, spiral	spreader 10m ³			
		7000	transporter, silos 12,5 m ³				
		2 robots	RMH 14m ³ /	slurry, deep channels,	electrical		
	170	Astronaut A4	65 kW/	tractor 117 kW+ slurry	0.25kW/, 3 electri-		
2	8500	10000	feeding in two milking robots,	spreader 14.2 m ³	cal		
			spiral transporter, silos 14 m ³		swinging cow		
			and 15 m^3		brushes 0.12 kW		
		robot VMS	SEKO 11 m ³ /	slurry, deep channels,	electrical 0,25kW/		
	83	5000	80 kW/	tractor 90 kW + slurry	2 electrical		
2	9500		feeding in milking robot and	spreader 12.7 m ³	swinging brushes		
3			1 feeding station,		0.12 kW		
			spiral transporter, silos 8 m ³ and 10 m ³				

Characteristic of investigated cattle barns

Table 2 shows the characteristic of buildings, regarding the area of a building, using, resting areas, cubage, the type of roof construction and a ventilation system, size of slatted floor and capacities of slurry channels.

Two barns had the construction of roof founded on columns, the remaining building had non-columned construction i.e. steel frames. Steel frames although more expensive, are recommended for objects with width up to 30 meters. Due to this solution there are possibilities for future adaptation of a building in case of further development (Romaniuk et.al., 2012). Lack of internal partitions in one-room spaced cattle barns causes, that ventilation is more effective, because there are no partitions which disturb gravitational movement of air, causing bad exchange of air and worse quality of air. This means, that when we have the same number of windows and doors, directions of wind and its velocity and geographical location of buildings, in a building without columns (steel frame construction) there is much bigger freedom for movement.

Table 2

Building characteristic of cattle barns including: building utilization, production and resting areas, slatted floor and capacities of channels for liquid manure.

barn	Construc-	Cubage	Ventilation/ air inflow/			Areas			Unitary capacities of slurry channels
No of	buildings	$(m^3 \cdot LU^{-1})$	air outflow	building (m ² ·LU ⁻¹)	using (m ² ·LU ⁻¹)	produc- tion (m ² ·LU ⁻¹)	resting $(m^2)/(m^2 \cdot LU^{-1})$	slatted floor (m ²)	$(m^3 \cdot LU^{-1})$
1	One – room spaced non- columned, steel frames	39.74	gravitational /windows roof ridge gap	9.38	9.01	7.85	120/1.10	361.4	3.95
2	Three-room spaced, columned	70.64	gravitational/ adjustable curtains/ roof ridge gap	12.44	11.64	10.98	363.5/3.3	1094.8	33.9
3	Three-room spaced, columned	74.43	gravitational /windows roof ridge gap	14.86	14.35	11.73	82.8/0.99	461.72	10.43

Tables 3-6 contain the set of machinery and equipment in investigated barns, including prices and costs of cattle buildings.

Table 3

Machinery, equipment and prices set for mechanization of technological treatments, costs of cattle barn no 1

Treatment	Machinery or equipment	Price	Number	Replacement
		Cm	of	value
		$(PLN \cdot pcs.^{-1})$	pieces	(PLN)
	"herring bone" 2x5(10) DeLaval	110 000	1	110 000
Ι	milk cooler 7000 dm ³	49 000	1	49 000
	heater	500	1	500
	mixing wagon Siloking 12 m ³	76 000	1	76 000
	tractor for mixing wagon Ursus 1614 110 kW	199 348	1	199 348
	telescopic, self-going loader MLT 627 20 Zoll 74 kW	158 600	1	158 600
II	the technological line for concentrates feeding: spiral transporter, 2 feeding stations, silo	45 000	set ¹	45 000
	self-locking feed ladder Meprozet Koscian	17 300	set ¹	17 300
	drinking bowls with two chambers,	700	2	1400
	with constant water level Arntjen	520	2	1040
	drinking pots with one chamber	520	2	1040
	with constant water level			
	Arntjen	4500		4500
	sturry mixer (own production)	4500		4500
	tractor for slurry mixer MF 255 (35 kW)	87 200	1	87 200
III	slurry spreader with pump Meprozet Koscian 10 000 dm ³	59 778	1	59 778
	tractor for slurry spreader	215 000	1	215 000
	hoof knife	350	1	350
IV	electric aggregate	6 500	1	6 500
Total outfit	E(PLN)			1 031 516
Replaceme	nt value of building (barn no. 1) (PLN)			824 236
Replaceme	nt value of equipment and cattle barn building (PLN	N·LU ⁻¹)		17025

Table 4

Machinery, equipment and prices set for mechanization of technological treatments, costs of cattle barn no 2.

		Replacement	Number	Replacement
Treatment	Machinery or equipment	value Cm	of	value
		(PLN·pcs.)	pieces	Total (PLN)
	milking robot LELY Astronaut A4	350 000	2	700 000
Ι	milk cooler LELY 10000 dm ³	140 000	1	140 000
	heater	14 000	1	14 000
Π	mixing wagon RMH 14 m ³	98 400	1	98 400
	tractor for mixing wagon SAME 69 kW	105 000	1	105 000
	telescopic, self-propelled loader	221 400	1	221 400
	silage cutter	8 100	1	8 100
	the technological line for concentrates feeding (spiral transporter, silos 14 m ³ and 15 m ³)	40 000	set	40 000
	feed pusher (robot) LELY JUNO 150 NN765	65 700	1	65 700
	chambered drinking bowls	2 500	4	10 000
	drinking bowls	80	7	560
	slurry mixer	16 000	1	16 000
	tractor for slurry mixer 69 kW	172 200	1	172 200
III	slurry spreader with pump for slurry 14 200 dm ³	120 000	1	120 000
	tractor for slurry spreader 117 kW	466 000	1	466 000
	robot for cleaning of slatted floor	52 200	1	52 200
IV.	hoof knife	350	1	350
1V	swinging cow brush LELY	6000	3	18 000
Total outf	it (PLN)			2 247 910
Replacem	ent value of building (barn no.2) (PLN)			1 500 000
Replacem	ent value of equipment and cattle barn building no	o. 2 (PLN·LU ⁻¹)		22 047
	-			

Table 5

Machinery, equipment and prices for mechanization of technological treatments, of cattle barn no 3.

	Machinery	Replacement	Number	Replacement
Treatment I II	or equipment	Cm	of	total
	or equipment	$(PLN \cdot pcs.^{-1})$	pieces	(PLN)
	milking robot VMS	400 000	1	400 000
Ι	milk cooler DeLaval 5000 dm ³	55 000	1	55 000
	heater (with heat recovery)	850	1	850
	mixing wagon SEKO 11 m ³	70 000	1	70 000
	tractor for mixing vagon SAME Roller 450 60 kW	120 000	1	120 000
	tractor SAME 74 kW	200 000	1	200 000
Π	the technological line for concentrates feeding (spiral transporter, 2 feeding stations, silos PRO AGRO)	40 000	1	40 000
	head-loader TUR -6	25 000	1	25 000
	feed pusher (robot) LELY JUNO	50 000	1	50 000
	chambered drinking bowls	1 000	2	2 000
	drinking bowls	80	4	320
	slurry mixer (own production)	4 000	1	4 000
	tractor for slurry mixing SAME 74 kW	-	-	-
ш	slurry spreader 12 600 dm ³	67 000	1	67 000
m	tractor for slurry spreader SAME 74 kW	the same for mixing vagon	-	-
	robot for slatted floor cleaning	64 500	1	64 500
11.7	hoof knife	350	1	350
IV	swinging cow brush DeLaval	6 250	2	12 500
Total outfit (PLN)			1 111 525
Replacement	value of building (barn no.3) (PLN)			1 100 525
Replacement (PLN·LU ⁻¹)	value of machinery, equipment and cattle barn b	uilding no. 3		21 169

Tables 6-8 shows labour and energetic inputs in cattle barns tested. Remarks to tables 6-8: ¹)vacuum pump, ²)milk pump, ³)heater, ⁴)aggregate, ⁵)ventilator, ⁶)mixer.

The electric energy for lighting was calculated based on normative 2W per m^2 of the building area for animals assuming the "artificial day" duration in months from September to March from 3 pm to 8 am, and in the remaining days from 6 pm to 6 am.

Table 6

Labour, electrical and mechanical energy input in cattle barn no 1.

Treatment	Activity /process	Process time (h·LU ⁻¹ ·year ⁻¹)	Process time $(h \cdot year^{-1})$	Labour input (man- mi- nute· year ⁻¹)	Energy source (kW)	Energy input on process (kWh·year ⁻¹)
Ι	milking + dairy unit washing	12.24	1 334.67	85 775.00	$2.20^{1}; 0.55^{2})$ 1.50^{3}	4 953.05
	milk cooling+ milk tank washing	174.13	18 980.00	1 825.00	$\begin{array}{c}4.0^{4});0.75^{5)};\\0.12^{6)}\end{array}$	9 909.75
II	feed loading	1.83	200.00	12 000.00	74.,20	14 840.00
	feed mixing and discharge	2.75	300.00	18 000.00	110.30	33 090.00
III	slurry mixing	0.18	20.00	1 200.00	35.30	706.00
	slurry pumping out	0.83	90.00	5 400.00	77.20	6 948.00
IV	decornization	2.00	218.00	13 080.00	0.25	54.50
	ordering activities, cleaning the walls /ceiling	0.11	12.00	720.00	1.75	21.83
	lighting	-	-	not appl.	-	2 640,09
Total labour	per year			138000	-	73 163.22
Daily labour	inputs per LU			3.468	-	1.84

Table 7

Labour, electrical and mechanical energy inputs in cattle barn no 2.

Treatment	Activity /process	Process time (h·LU ⁻¹ ·year ⁻¹)	Process time (h·year ⁻¹)	Labour inputs (man- minute·year ⁻¹)	Power of energy source (kW)	Energy input on process (kWh·year ⁻¹)
	milking -2 milking robots+ washing	89.75	8 200.00	21 717.50	$2.20^{1}; \\ 0.55^{2}$	22 550.00
Ι	milk cooling +washing of milk tank	27.06	4 200.00	1 930.44	$5.00^{4};$ $2x0.22^{5};$ $2x0.07^{-6};$ $1,20^{3};$	22 932.65
	feed loading	1.17	200.00	12 000.00	58.80	11 760.00
II	feed mixing and discharge	2.35	400.00	18 000.00	69.80	27 920.00
	feed pushing	2.47	420.00	not appl.	3.67	4964.00
	slurry mixing	0.73	124.00	7 440.00	95.60	11 854.40
III	slurry pumping out	0.73	124.00	7 440.00	110.30	13 677.20
	slatted floor cleaning	10.74	1 825.00	not appl.	0.17	310.25
	decornization	1.66	283.00	16 980.00	0.25	70.75
IV	ordering, cleaning the walls/ceiling	0.08	14.57	874.20	1.75	25.50
	lighting	not appl.	not appl.	not appl.		6 105.89
	swinging cow brush- es	18.81	not appl.	not appl.	3x0.12=0.36	799.45
Total labour	r per year			84451.70	-	122 970.00
Daily labou	r inputs per LU			1.36	-	1.98

Table 8

Labour, electrical and mechanical energy inputs in cattle barn no 3.

Treatment	Activity/process	Process time (h·LU ⁻¹ ·year ⁻¹)	Process time (h·year ⁻¹)	Labour inputs (man- minute ·year ⁻¹)	Power of energy source (kW)	Energy inputs on process (kWh·year ⁻¹)
	milking + 1 milking robot, washing (water heating)	89.76	7 450.00	29 200.00	$2.2^{1}; \\ 0.55^{2}; \\ 2.0^{3}$	12 309.30
Ι	milk cooling (aggregate, ventilator, mixer;), water heater)	53.01	4400.00	3 650.00	$\begin{array}{c} 6.0^{\ 4);}\\ 0.75^{5)}\\ 0.13^{6)}\\ 2.0^{3)}\end{array}$	11 351.10
	feed loading	1.20	100.00	6 000.00	74	7 400.00
II	feed mixing and dis- charge	3.01	250.00	15 000.00	66	16 500.00
	feed pushing	5.18	430.00	not appl.	55Ah	1578.10
	slurry mixing	0.05	4.00	240	66	264.00
III	slurry pumping out	0.96	80.00	4800.00	74	5 920.00
	slatted floor cleaning	13.19	1 095	not appl.	0.165	180.68
	decornization	1.66	138	8280	0.25	34.58
117	ordering, cleaning the walls/ceiling	0.18	14.57	874.20	1.75	25.50
IV	lighting	-	-	not appl.	-	3 004.83
	swinging cow brushes	24.09	2000.00	not appl.	0.12	240.00
Total labo	ur per year			68044.20	-	58 808.08
Daily labo	ur inputs per LU			2.24		1.94

Table 9 presents exploitation costs, table 10 total labour, mechanical and electrical energy, as well as exploitation costs of buildings, machinery and equipment.

Table 9

Costs of exploitation of buildings, machinery and equipment involved in mechanization of production processes

No of barn	Costs of mainte- nance (machinery) C ^m _m	Costs of maintenance (building) C ^b _m	Operating costs (machinery) C ^m _u	Operating costs (building) C ^b _u	Exploitation costs (machinery) Ce ^m	Exploitation costs (building) Ce ^b	Total exploitation costs C _e	Investment costs C _i
			(PLN·y	ear ⁻¹)			$\begin{array}{c} (PLN & (PLN \cdot \\ \cdot year^{-1}) & year^{-1} \\ \cdot LU^{-1}) \end{array}$	(PLN· LU ⁻¹)
1	84894.9	16 744.7	124462.8	6 286.9	209357.7	23 031.6	232389.4 2132.0	17025.5
2	178166.9	30 400.0	207200.4	11 831.7	385367.3	42 231.7	427599.0 2515.3	22 046.5
3	89188.5	22 410.5	101826.7	8 238.3	191015.2	30 648.8	221663.9 2670.7	26651.1

Table 10

Energetical and electrical indicators of	of investigated cattle ba	irns
--	---------------------------	------

No. of cattle barn	Unitary investment costs	Unitary daily labour inputs	Mechanization level	Unitary daily energy inputs	Unitary exploitation costs
	$(PLN \cdot LU^{1})$	(Man-minute day ⁻¹ ·LU ⁻¹)		(kWh·day ⁻¹ ·LU ⁻¹)	$(PLN \cdot year^{-1} \cdot LU^{-1})$
1	17 025.52	3.47	V	1.838	2 132.01
2	22 046.52	1.36	V	1.981	2 515.28
3	26 651.14	2.24	V	1.941	2 670.65

Conclusions

- The lowest daily labour input was in a barn equipped with two robots for milking, one robot for feed pushing and cleaning of slatted floor. The highest labour inputs were in a cattle barn with a "herringbone" 2x5 milking unit (10) and amounted to 3.47 working minutes per day and per LU – fifth level of mechanization was ensured. The automatic milking systems could be with all certainty used everywhere, where there are no human resources for service.
- 2. A significantly higher investment cost for buildings and their equipment and machinery for mechanization as well as exploitation costs were observed in cattle barns with robots, whereas the lowest was in a cattle barn with more livestock (170 LU).
- 3. The energy inputs calculated for 1 LU per day were the highest in a cattle barn with one milking robot.
- 4. The highest exploitation costs of buildings were in a farm with the highest herd size and with two milking robots. The highest total exploitation costs (regarding buildings and their equipment with machinery) were in cattle barns with milking robots. Higher exploitation costs in robotized cattle barns resulted in higher investment costs, but also higher, compared to other buildings electric energy inputs.

References

- Freiberger, F.; Klindtworht, K.; Baumeister, J.; Gierse, A.; Lehman, B.; Ohnesorge, M.; Harms, J.; Wendl, G. (2005). Automatisches Melken in modernen Milchviehställen. KTBL, Darmstadt, ISBN 3-7843-2174-7.
- Gazzarin, C.; Hilty, R. (2002). Stallsysteme für Milchvieh: Vergleich der Bauinvestitionen. FAT Berichte, Tänikon, Schweiz, CH-8356 Ettenhausen, Vol. 586, 20.
- Gazzarin, C.; Lips, M. (2013). Maschinenkosten, ART-Bericht, vol. 767.
- Jucherski, A., Król A. (2011). Nakłady pracy żywej i mechanicznej w chowie bydła mlecznego w górskich gospodarstwach rodzinnych, *Problemy Inżynierii Rolniczej, Vol. 71*(1), 59-67.
- Majchrzak, M. (2013). Wpływ mechanizacji w różnych systemach żywienia bydła na nakłady produkcji, *Problemy Inżynierii Rolniczej, vol.* 2(80), 141-150.
- Mazur, K. (2012). Ocena wielokryterialna obór wolnostanowiskowych dla krów mlecznych. Rozprawa doktorska, Instytut Technologiczno-Przyrodniczy, Warszawa, 157.

Muzalewski A. (2010). Koszty eksploatacji maszyn, ITP Falenty, ISBN 978-83-62416-05-9.

Naess G.; Stokstad, G. (2010). Dairy barn layout and construction: effects on initial building costs, Biosystems Engineering, vol. 109(3), 196-202. Romaniuk, W.; Mazur, K. (2014). Development of environmental conditions in free-stall cattle barns, Journal of Research and Applications in Agricultural Engineering, vol. 59 (1), 109-115.

- Romaniuk, W.; Rudnik, K.; Biskupska, K. (2012). Kształtowanie obiektów budowlanych i działek zagrodowych w gospodarstwach specjalizujących się w chowie bydła – wytyczne projektowe, Inżynieria w rolnictwie. Monografie Nr 5, Instytut Technologiczno-Przyrodniczy, Falenty, ISBN 978-83-62416-43-1.
- Szulc, R. (2009). Ocena systemu odzyskiwania ciepła podczas mycia urządzeń udojowych. Prace Naukowe IBMER, Vol.13(2), ISSN 0209-1380.
- Szulc, R., Markiewicz K. (2010). Position and research methodology of two-systems heat recovery system in the barn of dairy cattle. *Journal of Research and Applications in Agricultural Engineering*, vol. 55(2), 92-93.

ANALIZA EKONOMICZNA OBÓR BEZŚCIÓŁKOWYCH

Streszczenie. Celem artykułu było przedstawienie kosztów eksploatacji trzech obór w bezściółkowym systemie utrzymania bydła. Metoda bazowała na podejściu wielokryterialnym, które odnosi się do następujących czynników: technicznych, technologicznych (głównie energetycznych i nakładów pracy), ekonomicznych (koszt energii, robocizny, inwestycji). W ramach oceny technicznej przeprowadzono charakterystykę budowlaną, która dotyczyła powierzchni produkcyjnych, zabudowy, legowiskowych i kubatury. W celu przeprowadzenia oceny technologicznej zostały przeanalizowane wszystkie sposoby mechanizacji i jako wynik uzyskano nakłady energetyczne i inwestycyjne. Koszty eksploatacji maszyn, wyposażenia i obór dla bydła obliczono zgodnie z metodologią opracowaną w IBMER *[Instytut Budownictwa, Mechanizacji i Elektryfikacji Rolnictwa]*. Najniższe koszty eksploatacji były w oborze z tradycyjną dojarnią "rybia ość" i wynosiły 2 132.01 PLN·rok⁻¹·DJP⁻¹. Najwyższe koszty eksploatacji wynoszące 2 670.65 PLN·rok⁻¹·DJP⁻¹ były w oborze z jednym robotem do dojenia i najwyższą obsadą.

Słowa kluczowe: nakłady energii, nakłady robocizny, koszty eksploatacji, wolnostanowiskowe utrzymanie